Что такое лампа дневного света

Что такое лампа дневного света

Люминесцентная лампа или лампа дневного света (ЛЛ, ЛДС) — инертный газ в стеклянной колбе, излучающий видимый свет.

Принцип работы ЛДС заключается в насыщении газа ртутью с последующим пропусканием через него разряда, в результате чего образуется УФ-излучение, преобразуемое в видимый свет благодаря слою люминофора, содержащемуся во внутренней поверхности колбы. В этой статье будут рассмотрены ЛДС, их описание и технические характеристики.

Разновидности

В реализации наиболее используются газоразрядные лампы на основе ртути высокого (ГРЛВД) или низкого (ГРЛНД) давления:

  • ЛЛ высокого давления эксплуатируются в крупных промышленных секторах или для уличного освещения.
  • Светильники ЛБ 40 низкого давления применяются в домашних условиях или на небольшом предприятии.

Область применения

Люминесцентные источники света получили большой спрос в организациях общественного назначения: школах, больницах, госучреждениях.

С дальнейшим развитием светильники оснастили электронным балластом, стало возможным их применение в распространенных патронах стандарта Е14 и Е27.

ЛЛ актуальнее применять в помещениях промышленного сектора для обеспечения большего периметра освещения при минимальных энергозатратах. Также их используют в освещении рекламных щитов и фасадов.

Люминесцентные приборы сочетают в себе характерные черты эффективного и экономного использования электроэнергии. В быту лампы дневного света потолочные и настольные применяются для растений, освещения рабочей поверхности и жилых комнат.

Актуальность применения люминесцентных ламп

Широкое распространение ЛЛ получили благодаря многим преимуществам, а именно:

  • высокая световая отдача (ЛДС мощностью 10 Вт обеспечивает освещенностью, сравнимой с лампочкой накаливания 50 Вт);
  • большой диапазон оттенков испускаемого света;
  • полная рассеянность света.

Гарантированный срок эксплуатации ЛДС от 2 тыс. часов против 1 тыс. часов у ламп накаливания.

Недостатки люминесцентных устройств:

  • химопасность (в ЛДС содержится до 1г ртути);
  • неравномерный спектр, который неприятен человеческому глазу;
  • постепенное разрушение слоя люминофора, приводящее к ослаблению освещенности;
  • мерцание лампы с двухкратной частотой от сети;
  • наличие механизма, регулирующего пуск;
  • мощность ЛЛ не обеспечивает высокого коэффициента.

Принципы работы

Во время работы ЛЛ между двумя электродами, расположенными на ее краях, горит дугообразный разряд, который приводит к созданию УФ-свечения внутри колбы, наполненной газом, в составе которого ртутные пары.

Зрение человека невосприимчиво к УФ диапазону свечения, поэтому внутренние стенки колбы обработаны люминофорным составом, имеющим свойства поглощения ультрафиолета с дальнейшим преобразованием его в видимое белое свечение. Ортофосфаты кальция-цинка и галофосфаты лежат в основе люминофорного слоя. Также люминофор может быть насыщен другими веществами с целью получения определенного оттенка света. Термоэлектронная эмиссия электродов с катода создает поддержку электрической дуги в ЛДС. Дальнейшее разогревание катодов путем пропуска через них тока или ионной бомбардировки приводит к запуску устройства.

Технические характеристики

От технических характеристик зависит конечная работа ЛДС — необходимое освещение.

Мощность

От показателя мощности ЛЛ зависит светоотдача, которая влияет на площадь освещения. В реализации распространены лампы различной мощности.

Лампы 4–6 W

Применимы в помещениях небольшой комнаты. Отлично подходят в сельскохозяйственной местности, сторожевых будках или палатках. Эти ЛДС неприхотливы к потреблению электроэнергии, а также благодаря трансформаторным преобразователям эти лампы способны работать от 12 вольт, что дает возможность запустить лампу подсоединением к авто аккумулятору в условиях отсутствия электроснабжения. Также маломощные люминесцентные устройства применяются для освещения растений или аквариумов.

18 W

Самые распространенные ЛЛ по мощности лампы. Их можно встретить везде: в комнате, автомобильных боксах, офисах, павильонах.

36 W

Также получили большое распространение. Применяются в тех же помещениях, что и ЛЛ 18 W, с разницей в увеличении площади освещения.

58 W и 80 W

Эти ЛДС большой мощности применяются только в производственных цехах большой площади, хранилищах и ангарах, на подземной территории.

Иногда ЛЛ такой мощности можно встретить на участках открытой местности в условиях большой рассеянности света. Такие ЛЛ, в отличии от ламп 18 W и 36 W, более энергозатратные и их применение в быту или офисного освещения нерентабельно. Также они оснащены дополнительно светильниками дневного света, что приводит в еще большую неактуальность их применения в качестве потолочных светильников дневного света в помещениях малой площади.

Цветовая температура

Еще один главный параметр ЛДС. От качества света и цветовой температуры зависит качество освещения. Эти параметры отображены трехзначным значением на колбе устройства.

Значение 627

Соответствует устройствам с 60%-м качеством света и цветовой температурой 2700 К.

Значение 727

Лампы с качеством света 70% и аналогичной цветовой температурой.

Значение 765

Цветовая температура 6500 К, которой и обладают все без исключения ЛДС. Качество цвета на уровне 70%.

Необходимо учесть, что 2700 Кельвинов — цветовая температура лампочек накаливания, и ЛЛ с такой же цветовой температурой будет излучать лучи, воспринимаемые человеческим зрением, желтого цвета. С учетом восприятия человеком цветности свечения изготовляются люминесцентные устройства разной цветовой температуры.

Многие ЛЛ (энергосберегающие источники свечения) компактной формы излучают именно желтый свет. Цветовая температура 6500 присуща всем устройствам линейной формы и соответствует белому свету со слабым оттенком синего. Также изготовляются ЛЛ узкопрофильного назначения с температурой цвета 1300К, при включении которых наблюдается красный оттенок. В отдельных случаях для получения уникального оттенка свечения применяются цветные ЛДС.

Подключение к сети

Простейшая схема подключения ламп дневного света выполнена на основе стартера, дросселя (балласта) и конденсатора. Сами лампы не предусматривает их прямого включения в электрическую цепь, так как в отключенном состоянии люминесцентные устройства имеют высокое сопротивление, преодолеть которое можно только импульсом высокого напряжения.

Возможно также последовательное соединение двух ламп, при этом стартеров будет 2 штуки, а дроссель один, но он должен быть рассчитан на суммарную мощность ламп. Схема светильника на 2 лампы приведена ниже. На схеме нет конденсатора, но он также может быть установлен на входе светильника.

Принципиальная схема светильника иногда наносится на корпус стартера.

Дроссель (балласт), включается в электроцепь в качестве дополнительного сопротивления, предохраняющего от короткого замыкания. Стартер позволяет в моменты высокого сопротивления лампы зарядить дроссель, одновременно прогреть спирали лампы.

Лампу дневного света без дросселя невозможно запустить. От того, как устроена схема подключения, зависит общее энергопотребление всех устройств, подключенных вместе с люминесцентным источником света к электрической цепи.

Электромагнитный дроссель (ЭмПРА)

Дроссель постоянного индуктивного сопротивления, подключаемый только в цепь с ЛЛ определенной мощности. Сопротивление включенного в цепь ЭмПРА при включении начинает играть роль ограничителя подачи тока к светильнику.

Конструкция ЭмПРА проста и дешева в производстве, соответственно, дешевле и лампы с электромагнитным балластом. Несмотря на свою дешевизну и простоту обладает рядом недостатков:

  • длительность запуска до 3 секунд (время зависит от износа лампы);
  • высокое потребление электроэнергии дросселем;
  • постепенное возрастание частоты в пластинах дросселя из-за его износа;
  • мерцание с двухкратной частотой электросети (100 или 120 Гц) при включении, которое отрицательно влияет на зрение;
  • массивность и габаритность люминесцентных устройств (в сравнении с аналогами ЭПРА);
  • вероятный отказ в работе электрической цепи с дроссельным механизмом при температуре ниже нуля по Цельсию;
  • короткое замыкание, приводящее к припайке электродов дросселя к устройству, после чего его невозможно снять.

Схема подключения газоразрядных люминесцентных ламп с ЭмПРА предусматривает наличие стартера, регулирующего зажигание ЛЛ. Однако он дополнительно потребляет электроэнергию.

Электронный дроссель

Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает лампы высокочастотным питанием 25–133 кГц. В момент включения ЛДС с электронным дросселем человек в течение короткого времени наблюдает яркое мерцание. С помощью электронного балласта реализовано два принципа работы по включению ламп.

Холодный запуск

Сразу запускает устройство, но наносит значительный вред электродам. Лампы с таким вариантов запуска рассчитаны на малую частоту включения/отключения в течение дня.

Горячий запуск

Перед включением лампы, в течение 1 секунды, происходит разогрев электродов, затем она работает. Также присутствует тепловой индикатор, обеспечивающей устройство защитой от перегрева.

ЛЛ на основе ЭПРА более экономичные, чем и заполучили значительную популярность, чего нельзя сказать об аналогах ЭмПРА.

Причины неисправности

Электроды ЛДС представлены вольфрамовой спиралью, покрытой активными щелочными металлами, которые обеспечивают заряд. С периодом эксплуатации активная масса осыпается с электродов, они приходят в негодность.

В момент включения лампы (пуск разряда и последующий разогрев электродов) происходит дополнительная нагрузка на активную массу, что еще сильнее разрушает ее. На участках с наибольшей потерей активной массы поступает меньше напряжения, что приводит к неравномерной отдаче, и человек наблюдает мерцание лампы в период ее работы. Также осыпание активной массы приводит к полной неисправности лампы, а на концах трубки появляется темный оттенок.

Отсюда следует, что срок службы ЛЛ зависит еще от качества активной массы и частоты включения лампы. Но даже при этих ограничениях срок службы ЛДС как минимум намного выше (2000 запусков против 1000 у обычных лампочек накаливания).

Типы исполнения

Люминесцентные устройства подразделяются на два типа по варианту исполнения колбы.

Линейные лампы

Эти ЛЛ представлены ртутными лампами низкого давления. Большая часть света этих ламп излучается люминофором. Люминесцентные устройства, крепящиеся на потолок, являются основным представителем линейных ЛЛ. Потолочный светильник дневного света получил огромный спрос во всем мире в помещениях различного назначения.

Среди линейных ламп в России распространены ЛДС с круглой трубкой Т8 (D=26 мм) и цоколем типа G13. Мощность этих ламп взаимосвязана с размером трубки — стандартные ЛДС мощностью 18 W имеют длину трубки 600 мм, а лампы 36 W уже вдвое длиннее, 1200 мм. Также существуют лампы других мощностей, но они получили меньшее распространение либо у них узкий круг применения.

Стоит отметить, в советский период наибольшее применение получили ЛДС с колбой Т12, диаметр которой составлял 38 мм. Эти лампы были более энергозатратными — 20 W короткие и 38 W длинные против 18 W и 36 W соответственно. Также встречались лампы с трубкой Т10 (32 мм), но они не получали широкого спроса по сравнению с T12.

Читайте также:  Регулировка карбюратора бензопилы чемпион 142

В западных странах в последние годы стали преобладать лампы с трубкой последнего поколения Т5 диаметром 16 мм. Они достаточно тонкие и получили более обширное применение в интерьере.

Если затрагивать технологический прогресс, то буквально недавно китайские разработчики создали устройство с колбой Т4 (12,5 мм). Это только новинка, которая еще не получила обширного применения, и о перспективах таких трубчатых ламп пока рано говорить. ЛДС с еще меньшим диаметром трубки на практике пока не сделали.

Двухцокольная прямолинейная лампа представляет собой стеклянную трубку с вваренными на концах стеклянными ножками, в которые вмонтированы электроды. Герметично запаянная трубка содержит аргоном или неон, обогащенный ртутью, которая при включении лампы переходит в газообразное состояние. Цоколи на концах трубки оснащены контактами для подключения лампы в цепь.

Линейные ЛДС потребляют всего 15% от потребления лампы накаливания, обеспечивая аналогичную освещенность. Эти лампы часто встречаются на производстве, в офисах, транспорте.

Компактные лампы

Представляют собой светильники дневного света с изогнутой трубкой.

Компактные лампы могут иметь свободную (любую) форму колбы и распространены для частного использования. К компактным люминесцентным устройствам также относятся, так называемые, энергосберегающие лампы.

Также распространены компактные лампы под патроны стандарта Е14, Е27, Е40, которые применяются в светильниках.

Варианты применения

В настоящее время люминесцентные устройства получили большое применение, как в освещении промышленных объектов, так и в организации интерьера помещения. Светильники с лампами дневного и белого света применяются во многих целях:

  • Люминесцентные светильники ЛБ 40 низкого давления, предназначенные для освещения всей площади помещения закрытого типа.
  • Люминесцентная лампа для аквариумов и комнатных растений, обеспечивающая локальное освещение.
  • Фитолампы (цветочные светильники) — люминесцентные лампы для цветов и растений.
  • Настольная и настенная лампа дневного света, придающая мягким освещением уютную обстановку при чтении или отдыхе.

Маркировка

Маркировка устроена так, что потребитель без труда сможет выбрать необходимую ЛЛ при покупке. Наиболее распространены следующие обозначения:

  • ЛБ (белый свет);
  • ЛД (дневной свет);
  • ЛХБ (холодно-белый свет);
  • ЛТБ (тёпло-белый свет);
  • ЛЕ (естественный свет);
  • ЛХЕ (холодный естественный свет).

Видимый оттенок напрямую зависим от цветовой температуры. Цветовая температура ЛДС составляет 6400–6500К, что соответствует примерной цветности белого света.

Помимо типа лампы также указываются необходимые технические характеристики лампы: напряжение, форма, размеры и так далее. Маркировка наносится на стеклянную колбу или корпус ЛДС.

Все без исключения ЛДС содержат газы, насыщенные парами ртути. При происшествиях, в результате которых лампа разбилась, пары ртути проникают в воздух.

В дальнейшем ртуть может оказаться в организме человека и нанести вред здоровью. Поэтому стоит бережно обращаться с люминесцентными лампами.

Видео по теме

Люминесцентными называются электрические газоразрядного типа лампы, отличающиеся большим сроком службы. Изделия обеспечивают искусственное освещение в жилых комплексах, офисных и торговых центрах, промышленных объектах. Разработаны варианты устройств с разными оттенками излучения, видом цоколя, формой трубки, функциональностью и т.д.

Устройство и принцип работы ламп

Согласно истории люминесцентной лампы, первое осветительное устройство газоразрядного типа было сконструировано в 1856 г. Г. Гейслером. Конструкция приборов усовершенствовалась. Лампы дневного света в массовое коммерческое использование поступили в конце 30 г. XX в.

Конструкция относится к газоразрядным источникам освещения, сконструирована с использованием трубки из стекла, которая с двух сторон запаяна. Изнутри на поверхности лампы нанесен слой специального вещества (люминофора). Устройство излучает рассеивающий свет после подключения к источнику электропитания. Изнутри колбу наполняют аргоном.

Люминесцентное устройство включает:

  • катоды, защищенные эмиттерным слоем;
  • выводные штыри;
  • концевую панель;
  • трубки для отвода инертного газа;
  • ртуть;
  • стеклянную штампованную ножку, дополненную электровводами и т.д.

Принцип функционирования основывается на возникновении электроразряда между электродами после подсоединения к электросети. После взаимодействия разряда с газами инертными и испарениями ртути возникает излучение ультрафиолета, воздействующее на люминофор, преобразующий энергию в световое излучение. Для корректировки оттенков ртутьсодержащих устройств применяются люминофоры с разными химическими компонентами.

Дуговой разряд в колбе создается оксидным самокалящимся катодом, на который воздействует электричество. Для включения ламп ДРЛ, ЛД катоды разогревают посредством пропускания разряда тока. Устройства с холодным катодом запускаются ионным воздействием в тлеющем разряде высокого напряжения.

Для функционирования люминесцентным приборам требуется дополнительный узел (балласт), обеспечивающий работу дросселем и стартером. Балласт регулирует силу разряда и выпускается 2 видов (электромагнитный и электронный).

Электромагнитный балласт является механическим. Устройство относится к бюджетным вариантам, в работе прибор может издавать шум.

Электронные узлы дороже по стоимости, работают бесшумно, оперативно включают систему, компактны.

Классификация люминесцентных ламп

По показателю спектрального излучения приборы люминесцентного типа подразделяются на 3 категории:

  • стандартные;
  • с усовершенствованной передачей цвета;
  • со специальными функциональными назначениями.

Стандартные приборы снабжаются люминофорами однослойными, позволяющими излучать разные тона белого. Приборы оптимальны для освещения жилых помещений, административных и производственных блоков.

Люминесцентные лампы с усовершенствованной передачей света оснащаются люминофором с 3-5 слоями. Структура позволяет качественно отражать оттенки за счет усиленной световой отдачи (на 12% больше типовых ламп). Модели подходят для витрин магазинов, выставочных залов и т.д.

Люминесцентные лампы специализированного назначения совершенствуются с помощью разных составов в трубке, позволяющих поддерживать заданную частоту спектра. Устройства применяют в больницах, концертных залах и т.д.

Приборы разделяются на модели высокого и низкого давления.

Конструкции с высоким давлением оптимальны для монтажа в уличных лампах и приборах, имеющих большую мощность.

Лампы невысокого давления применяются в квартирах, административных комплексах, производственных помещениях.

По внешнему виду ЛЛ представлены линейным и компактным вариантами.

Линейная конструкция колбы удлиненная, применяется для промышленных помещений, торговых центров, офисов, медучреждений, спортивных организаций, заводских цехов и т.д. Линейная модель представлена разными вариантами диаметров трубки и конфигураций цоколя. Устройства обозначаются кодами. Прибор с диаметром 1,59 см на упаковке отмечается знаком Т5, с размером 2,54 см – Т8 и т.д.

Компактные люминесцентные лампы (КЛЛ) представляют спиралевидную стеклянную трубку и предназначены для установки в квартирах, офисах и т.д. КЛЛ делятся на 2 типа, главное отличие – виды цоколей (стандартный и с основанием в форме штыря).

Традиционный цоколь в форме резьбы отмечается знаком «Е» и кодом с размером диаметра.

Штырьковый вид цоколя отмечается символом «G»; цифровые данные обозначают расстояние между штырями. Этот вил лампы оптимален для установки в настольных лампах, подвесных бра в небольших помещениях.

Люминесцентные лампы различаются мощностью (слабые и сильные). Мощность люминесцентной лампы в Вт может превышать показатель 80 единиц. Устройства с небольшой мощностью представлены изделиями до 15 Вт.

По показателю распределения света устройства могут быть направленного действия (рефлекторные, щелевого типа) либо ненаправленного.

По типу разряда приборы подразделяются на дуговые, устройства свечения либо тлеющего разряда.

Различается сфера применения осветительных устройств (наружные, внутренние, взрывозащищенные, консольные).

Наружные устройства подходят для оформления зданий с внешней стороны, для освещения беседок, оформления двора и т.д. При выборе необходимо учитывать температурные режимы региона.

Внутренние подходят для офисных и жилых зданий. Устройства снабжаются защитой от влажности и воздействия пыли. Детали корпуса соединяются герметичным способом. Конструкция ламп может быть прямой, подвесной, предназначенной для крепления к поверхности потолка.

Приборы взрывозащищенные разработаны для территорий с риском возникновения взрывов (склады, цеха по производству красителей и т.д.).

Приборы консольного типа монтируются с помощью специальных креплений и имеют индивидуальный корпус.

Маркировка

Маркировочное обозначение люминесцентных ламп указано на коробке и содержит данные о фирме, мощности, конструкции цоколя, периоде работы, оттенке свечения и т.д.

Согласно расшифровке индекса первая буква маркировки приборов люминесцентного типа – Л. Последующие буквы указывают на цвет оттенка излучения прибора (дневной, белый, холодный тон белого, ультрафиолетовое излучение и т.д.). Кодовое значение будет включать символы Д, Б, УФ и т.д.

Особенности конструктивного исполнения на маркировках обозначаются соответствующими буквами:

  • u-образные люминесцентные лампы (У);
  • изделия кольцевой формы (К);
  • устройства рефлекторного типа (Р);
  • лампы быстрого запуска (Б).

В устройствах люминесцентного вида на маркировке отображаются и показатели свечения, единицей измерения служит Кельвин (К). Показатель температуры 2700 К по оттенку соответствует излучению лампы накаливания. маркировка 6500 К обозначает холодный белоснежный тон.

Мощность приборов маркируется цифрой и единицей измерения – Вт. Стандартные показатели представлены устройствами от 18 до 80 Вт.

На этикетке также представлено обозначение ламп в соответствии с такими характеристиками, как длина, диаметр и форма колбы.

Диаметр колбы на лампе фиксируется буквой «Т» с кодовым обозначением. Прибор, обозначенный кодом Т8, имеет диаметр 26 мм, Т12 – 38 мм и т.д.

Маркировки приборов по типу цоколя содержат буквы Е, G и цифровой код. Обозначение для миниатюрной формы резьбового цоколя – Е14. Средний резьбовой цоколь имеет код Е27. Цоколь втычного типа для декоративных конструкций и люстр маркируется символом G9. Приборы u-образные обозначаются символом G23, двойные u-образные приборы – G24 и т.д.

Технические характеристики

Техническая информация по люминесцентным приборам включает данные о мощности работы, типе цоколя, сроке службы и т.д.

Показатели срока годности люминесцентных приборов варьируются от 8 до 12 тыс. часов. Характеристики зависят от типа лампы. Устройства Т8 и Т12 работают 9-13 тыс. часов, лампы Т5 – 20 тыс. часов.

Световая эффективность устройств составляет 80 Лм/Вт. Выделение тепла при горении невысокое, ветроустойчивость – средняя, положение горения – горизонтальное. Параметры допустимой температуры окружающей среды для ламп составляют +5…+55°С. Оптимальные характеристики эксплуатации – +5… +25°С. Устройства, имеющие покрытие из амальгамы, используются при +60°С.

Читайте также:  Как использовать листья сельдерея в пищу

Показатели цветовой температуры приборов варьируются в зависимости от модели в пределах от 2000 до 6500 К. КПД светильника составляет 45-75%.

Цветность и состав излучения ламп

Характеристики передачи цвета показывают качество отображения в сравнении с естественным типом освещения. Высокая четкость передачи цвета присутствует в галогенных приборах и обозначается кодом 100.

Различаются оттенки светового излучения приборов, изменяющие цветовые характеристики предметов.

Согласно нормативам ГОСТ 6825-91, люминесцентные устройства имеют следующие типы оттенков излучения:

  • дневной (Д);
  • белоснежный (Б);
  • естественный оттенок белого (Е);
  • белый с теплым тоном (ТБ);
  • белый с холодным тоном (ХБ);
  • ультрафиолетовый (УФ);
  • холодное естественное свечение (ЛХЕ) и т.д.

Добавление знака Ц в указании цветности свидетельствует об использовании состава люминофора с усовершенствованной передачей цвета.

Отдельно обозначаются цвета в осветительных устройствах со специальным назначением. Лампы с ультрафиолетовым излучением фиксируются кодом ЛУФ, приборы рефлекторные синего света – ЛСР и т.д.

Преимущества и недостатки

Люминесцентные устройства имеют преимущества, достоинства и недостатки. Лампы имеют высокий показатель световой отдачи. Люминесцентные приборы в 20 Вт обеспечивают освещение в комнате, которое имеют устройства накаливания и иллюминационные лампы в 100 Вт.

Изделия отличаются высоким коэффициентом полезного действия. Энергосберегающие лампы используются до 20 тыс. часов при обеспечении требований эксплуатации.

Свет у люминесцентных конструкций не направленный, а рассеивающий. В северных регионах рекомендовано применение люминесцентных ламп дневного света в жилых и общественных зданиях.

Преимущество люминесцентных устройств в разнообразии конструктивных решений. Разные формы, цветовые оттенки устройств позволяют реализовывать оригинальные дизайнерские решения в архитектуре общественных и жилых комплексов.

К недостаткам люминесцентных приборов относится содержание в конструкции ртути, в зависимости от размера лампы объем вещества варьируется от 2,3 мг до 1 г. Однако производители разрабатывают конструкции, которые в применении не опасны.

Необходимо учитывать сложность в монтаже схем включения и ограниченную мощность на 1 единицу (150 Вт). Эксплуатация устройств зависит от климатических условий, т.к. при понижении температуры устройства гаснут либо не зажигаются. Световой поток в лампах снижается к концу эксплуатации прибора.

Как выбрать лампу

При выборе лампы важен температурный режим использования прибора, показатель электрического напряжения в сети, размеры ламп, сила светового потока, оттенок излучения. Параметры цоколей люминесцентных ламп должны соответствовать типам светильников, торшеров и т.д.

Различается подбор ламп по типу помещения (прихожие, гостиные, спальни, ванные и т.д.). Для жилых пространств подходят модели с резьбовым цоколем и электронным балластом, т.к. не имеют резкого мерцания и бесшумны.

Для прихожих необходимы мощные светильники с интенсивным, при этом рассеянным освещением. Для настенных бра подойдут приборы компактного типа с теплым оттенком (930) и цветопередачей высокого качества. Над карнизом под потолком можно монтировать ленточные светильники с лампами холодного оттенка (860) и трубчатой конструкцией.

В гостиной люминесцентные устройства используются для бра, которые монтируются для подсветки зон либо декоративных элементов. Цвет подбирается белый, высокого качества (940). Возможен монтаж осветительных устройств по периметру потолка.

В спальни рекомендуется выбирать люминесцентные приборы стандартные с показателем 930-933 либо компактные устройства с похожими качествами.

Освещение в кухонной зоне должно быть многоуровневым (общим и локальным). В качестве потолочных рекомендованы компактные устройства мощностью не меньше 20 Вт, оттенок света должен быть теплым, с показателем не ниже 840. Для обустройства рабочей зоны на кухне оптимальны лампы линейные люминесцентные, не создающие блики на поверхностях.

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000 [1] -20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.

Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Особенности подключения

С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Электромагнитный балласт

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.

В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе что и вызывает зажигание лампы, это явление основано на самоиндукции. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного. В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя иили лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Читайте также:  Как разделить орхидею в домашних условиях пошаговое

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего — переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно выского напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Многие люди считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.

Также существуют люминисцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей [2] .

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Колбные лампы

Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).

Применение

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

Компактные лампы

Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы. Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.

Ссылка на основную публикацию
Чертежи домика для колодца
Единственным источником питьевой воды в загородном доме зачастую выступает колодец. Сохранить чистоту живительной влаги и придать сооружению привлекательный вид помогает...
Чайный домик своими руками мастер класс
На чтение: 5 минут Нет времени? Чаепитие – это особый ритуал, полный семейного уюта и задушевной атмосферы. Любители почаёвничать заваривают...
Чайный гриб приготовление и свойства
Как приятно в летний зной утолить жажду прохладным чайным квасом, приготовленным в домашних условиях! Живое существо медузомицет, названное из-за сходства...
Черно белая порода кур
Среди пород домашней птицы особым расположением у фермеров пользуются чёрные куры. Смолянистое оперение, переливающееся на солнце, привлекает внимание и заставляет...
Adblock detector